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Abstract 

The article reviews the new theoretical developments for the Cl’-parameter 

d/s and its intimate connection with the mass of a heavy top quark. 

1. INTRODUCTION 

In this article we review recent theoretical estimates of the CP-parameter 

(e’/~), which include the modifications introduced by a heavy top quark. CP violat- 

ing effects have so far been established only in the K-meson system. They consist 
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of the leptonic asymmetry[‘l 

6 = r(KL + e+vx-) -~(KL + e-fir+) +.30 +o.12J x 1o-3 
r ( KL -+ e+m-) + l7 (KL --t e-m+) (1) 

and the hadronic decays*[‘] 

4Kr. + n+~-) = (2.266 * o.ola) x 10-~ew.~*w 
‘+- = A(Ks -+ T+T-) (2) 

A(KL * ++‘) = (2.245 & ,,.036) x 10-3e’(54is)0 
“’ = A(Ks -+ &“) 

Each of the above quantities is an unambiguous manifestation of CP violation. These 

ratios by themselves, however, could not establish whether the CP asymmetries 

originate in the mass matrix or the decay amplitudes or both. The reason is that 

a CP asymmetry in one decay amplitude can be transformed away by the freedom, 

which occurs in the definition of the lK” > state. More explicitly, the freedom which 

occurs in the definition of a lK” >, i.e. 

II?,, >= eiplKo > (U(1) - transformation) (4) 

with a-real, permits the introduction of a phase convention, where one of the decay 

amplitudes 

A(K’ -+ xx,l=O) 

A(K’ + iTx,r = 2) (5) 

is real. Thus, in order to establish CP violation in the decay amplitudes, it is 

necessary to show that 

phase A( K” + FW, I = 2) # phase A( K” + TX, I = 0) (‘3) 

tThere are new results on the phase difference which provide a new test of the CPT theorem. 

400 -d+- = -0.3f2.4f 1.2’ (E 731) 

0.2 f 2.6 zt 1.2’ (NA 31) 



This is precisely the purpose of the measurements for ?J+- and 700, but since nature 

has chosen a very small or perhaps zero phase difference, the subject is presently 

under active investigation (see eqs. (11) and (12) below). The relative phase is 

measured by the parameter 8, which is defined a&*] 

where A is the phase introduced by the final-state-interaction of the two pions. 

Introducing the fact that arg c z arg 6 we arrive at 

1 1 ImA 

( 

ImAo 
t’/e = 3 T;i --Iq -ld Y&r> (8) 

with w = IA2/Aol = l/22. The second term is suppressed by a factor w; thus for 

the case 

ImAo = 0 ( GF astrong) (9) 

and 

ImAz = 0 (GF aem) (10) 

the two terms in eq. (8) are comparable. This is in fact the case we shall consider, 

as indicated by the diagrams in fig. l[sl. 

Because of the physical significance of 8, a large experimental effort has been 

launched to measure it. The NA 31 experiment at CERN reported a positive effectL41 

(d/e) = (3.3 f 1.1) x 1o-3 (11) 

which is 3~ away from zero. The E 731 experiment at Fermilab has analyzed 20% 

of their data and does not confirm the above result. It reports[5] 

(8/c) = (-0.4 f 1.4 (stat.) + 0.6 (syst)) x 10-s (12) 



Thus, the final value for the ratio is still an open issue and should be clarified by 

further analysis of the data and refinements of the results. In this situation it is 

important to sharpen the theoretical predictions for the ratio. 

What we need are theoretical estimates for ImAo and ImAg. Phases for the 

amplitudes are introduced by Feynman diagrams, like the penguins and others. To 

derive an effective Hamiltonian at low energies, p* x m:, we follow the method 

of integrating out the heavy quarks@]. One computes at the high energy scale 

m, all relevant diagrams, whose values will be used later on as initial conditions. 

Strong and electroweak corrections to the original operators generate new operators, 

which after higher order corrections reproduce themselves. Next, one integrates 

the renormalization group equations between thresholds dropping at each stage the 

heavy quarks. Thus one arrives, at the end, at an effective hamiltonian 

%rb) = -3 $ {fcC,F(d + ft%4} Qi 
if4 

03) 

with 

Cy, Cj: Renormalized coefficient functions, 

Qi : Basis of operators, and 

f,, = V,,V’: with Vij elements of the KM matrix. 

The KM matrix elements contain phases which produce imaginary parts. The 

unitarity of the KM matrix implies 

Id2 = -hL& 5 -Pr sin 6’ 

and gives 

I”=ff(P) = -g Im fc T C,(p)Q; (14) 

with C,(p) = C:(p) - C:(p). Substituting the effective Hamiltonian into the defini- 



tion of the E’, one obtains 

I~~c~C;(~) [< Qi >Z W-W < Qi >o] (15) i=, 
i+ 

The problem is now divided in two parts: 

1. determination of the coefficient functions C;(p) at a low energy scale p, and 

2. estimates of the hadronic matrix elements < rrxjQilKo >. 

2. THE COEFFICIENT FUNCTIONS 

The renormalization program follows standard method81. One starts at a 

high energy scale, p = m, and computes all quark diagrams, which contribute to 

the AS = 1 hamiltonian. The relevant diagrams are presented in figure 1. Diagrams 

(la) and (lb) are the lowest order weak interaction and the QCD corrected diagram, 

respectively. Diagram (lc) is the gluonic-penguin. The diagrams in fig. (Id) are of 

electroweak origin and became interesting because they increasef7] with the top quark 

mass.[‘] They are referred to as the electroweak penguins. Finally, the diagrams 

in fig. (le) are box diagrams with top quarks in the intermediate states. These 

diagrams and their gluonic corrections generate a set of twelve operators, which 

reproduce themselves when higher order QCD corrections are included. 

A complete set of operators is the following: 

Q1 = (~,d,)~-~(ti~gup)~-~ Lowest order weak 

Qa = (%.dp)v-a(Wk.)v-a and its gluonic corrections 

Q3 = (%&)v-a ~(QPW)V-A 
‘I 

Q4 = (%$)v-a ~(@a-.)~-A Gluon - penguin 

Qs = (%&b-A j&vzdv+r 
* 



&a = (ids)v-A ~(~&&'+A 
P 

QT = +A)v-A c e,(qpqo)v+A Electroweak penguin 
P 

QB = ;(s‘&)v-a c e,(qpqa)v+a 
P 

Qs = (%dv-A(Wp)v-a + (U,)v-A(tipg)v-A - 

(%ca)v-A(%%)~-A - (G,)v-a(@c++)v-a 

Qm = (%%)v-a(%+)v-A - (%d,)v-a(asuq)v-a - 

(%Cdv-A(+p)v-A + (%&)v-a(+,Y)v-a 

QII = (%&)V-&$‘~)v-a From box diagrams 

Qu = (%&‘)v-.&h&-A 

The indices a and p refer to colours and a summation over repeated indices is as- 

sumed. The calculation of the diagrams at p z m, gives the initial conditions 

C;(m,) for the subsequent integration of the renormalization group equations. Dur- 

ing the past year several papers appeared which consider the effects of a heavy top 

quark and are summarized as follows. 

1. A renormalization analysis of the coefficient Cl,. . . , Ce was published by Schnei- 

der, Wu and myselfis], ignoring the operators Qr,. , Q12. Our results showed 

that these coefficients are insensitive to the heavy top quark mass, but depend 

on the renormalization scale p and AQCD. 

2. An independent article by Flynn and Randall[71 included the operators &I,. . . , Q1o 

and found that the coefficients C,(p) and C,(p) are sensitive functions of mt. 

In fact, as mt increases, Cr and CB change sign and enhance the significance 

of the eiectroweak terms. The above article was checked by two groups, inde- 



pendent of each other,I”‘Jil who pointed out an error in the initial conditions 

for the coefficients Cd, Cs and Cr. To be specific, the terms a,D(p) should be 

replaced by Q, @ (the structure function for the gluon-penguin, i.e., a.. F(z) 

with F(r) defined in eqs. (1) - (4) of ref. [ll]). This modification changes 

the coefficients at low energies by -15%) to which the original authors con- 

cur. However, their original conclusion that the importance of the electroweak 

penguins operators are enhanced as mt becomes larger than 100 GeV remains 

unaltered. 

3. The work of Buchalla, Bums and Harlander Iis] also presents a detailed study 

of the parameter (e’/r) which decreases considerably for rnt X 100 GeV. For 

very large values of mt > 200 GeV the ratio could become negative. 

4. All of the above articles omit the operators Qii and Q1r because they expected 

their effects to be small. Recently Schneider, Wu and myselfl”I completed an 

analysis including Qii and Qir and found that they also modify the coefficients 

by -10%. In fact, their effects compensate somewhat the corrections described 

above. These effects are small, but still important because they determine the 

minimal value allowed for (e’/e). 

The calculation is also particular because Qir is linearly dependent 

Qta = (k$)v-&d&-A 

= ~(Q~-QQ~)-QQs+Q~+Q~~+Q*~. (17) 

and must be eliminated at all stages of the calculation. The effects of Qlz are still felt 

because it contributes to the initial conditions. The final results for the coefficients 

Cs, Cr and Cs are shown in figure 2. Our computation uses the resealing methodI 

with independent operators at each energy scale. (See appendices A and B). We 

note that the variation of Cr and Cs with mt is substantial. It is also worthwhile to 

note that the coefficient functions are sensitive functions of Aeon. 



3. HADRONIC MATRIX ELEMENTS 

The effective low energy Lagrangian in (13) contains seven operators, whose 

matrix elements we should calculate for each process under consideration. The 

matrix elements < Qi >, , < Qs > were studied extensively for estimates of 8 

and the AI = l/2 rule. Several methods were used: 

1. Factorization[‘r1 

2. Chiral Lagrangian inspired by the l/N expansion,l’sl 

3. QCD sumrules,li41 and 

4. Lattice gauge theories.[‘sl 

In spite of the various names, these models have many points in common and it is 

hoped that their answers will eventually converge to the same values. 

The interest here is on the new elements < Qr >c,s and < Qs >s,s. In fact 

we can normalize them to < Qs >o with the ratios being more reliable because 

several parameters drop out, i.e., the dependence on light quark masses. All the 

operators Qs, , Qs have a (V - A)(V + A) Lorentz structure and are related after 

a Fierz rearrangement to scalar densities c&q;. They are in turn given by the chiral 

Lagrangian[‘31 

&qi = ifi T 
[ 
u - $eJ 

1 
(18) 

ij 

with 

m:=~r(m,+md) and (19) 

1 1 
m~=-T(m~+ms)~-rms. 

2 2 (20) 

A complete set of matrix elements is presented in the article by Buchalla, et al.,l’ol 

where the reader can find the relations 

<QB>o/<QB>o=-~ 11: 
2 774-m; (21) 



1 
< Qs >z / -c Qs >o= -- A;: 

2Jz m$ -m: (22) 

-c Q, >o J < Qs >a=< Qr >z / < Qs >z= ; (23) 

1 
a 

< Qs >,,= -4 4 
ms(p) + md(p) 

(24) 

with A, = 1020 MeV. The formulas (21) _ (23) depend on quantities which are 

well known. If instead of the chiral Lagrangian we use the factorization method, 

as described in ref. [16], we obtain the same results for < Qs >s,r. Finally, since 

the QCD sumrules give a justification of the factorization results they will provide 

additional support for these relations. 

In general, the matrix elements have a p dependence, which is absent in the 

leading terms given above. To improve the situation we include for Qi and Qs the 

next to leading corrections. Values for the elements and the n-dependencel’q are 

given in Table 1. 

Table 1 

Dependence of matrix element 

on the renormalization scale. 

4. NUMERICAL RESULTS 

Now that we evaluated the coefficient functions and the matrix elements, 

there remains to combine them together and obtain the various contributions. In or- 

der to separate various dependences, we decided to normalize the results to < Qs >s 



and present the various terms. In Tables 2a and b we show the contribution from 

i-l ,,+,,,, which is independent of mt, and each of the other terms at p = 0.8 GeV and 

for two values of &co = 0.1 and 0.3 GeV, respectively. 

mtin GeV S& Cl,+,,, R,t f-b 

50 1.00 -0.27 -0.10 0.01 

100 1.00 -0.27 -0.09 0.03 

150 1.00 -0.27 -0.08 0.05 

200 1.00 -0.27 -0.07 0.07 

250 1.00 -0.27 -0.06 0.09 

n, 

Table 2a 

Various terms contributing to (e’/e) for 

p = 0.8 GeV and AQCD = 0.1 GeV 

mt in GeV 0, n,+,,n noct fh7 a2, REWP & 

50 1.00 -0.27 -0.08 0.00 -0.04 0.04 0.66 

100 1.00 -0.27 -0.07 0.01 -0.03 -0.08 0.56 

150 1.00 -0.27 -0.06 0.02 -0.03 -0.31 0.35 

200 1.00 -0.27 -0.05 0.03 -0.03 -0.75 0.08 

250 1.00 -0.27 -0.05 0.04 -0.02 -0.91 -0.22 

Table 2b 

Terms contributing to E’/C for Jo = 0.8 GeV 

and AQCD = 0.3 GeV. 



The notation here is as follows: 

Lt = 2 C;(P) < Qi >O and h~7 = -i $ C,(P) < Q< >Z 
i=l 

and the Ri’s are normalized to he as 

h &, = ff,. . . ,Q, = & hi/he 
iz.9 

and 

OEWP = f: hi/ha . 
id/ 

The term Cl,+, I is the long distance contribution from ?r - 7 - 7’ mixing [18]. The 

terms which show a strong dependence on mt are &r and anwp. In fact, the latter 

starts with a small and positive value, then decreases and vanishes at mt z 80 - 100 

GeV and becomes negative for larger values of mt. Thus, its role up to 100 GeV is 

to permit the negative contributions from 12,,++,Roct and R, to become apparent. 

For larger values of m, > 150 GeV the Rawp becomes large and negative reducing 

the sum of the terms further. 

At this point it is important to pause and ask how reliable are the modifications 

and reductions introduced in Tables 2a and b. First, we remark that the choice of 

our presentation makes the results independent of the KM matrix elements, which 

will be introduced, at the end of this section as a multiplicative factor to or.,. The 

bulk of the reduction in tables 2 comes from the terms !&,+no and flnwp. The long 

distance effects from x - 7 - 7’ mixing were studied previously by several authors.[“l 

We did not investigate it any further. The remaining terms including Rnwn, as was 

emphasized in Section 3, involve ratios of hadronic matrix elements and we do not 

expect large variations. However, there are non-factorizable terms and one should 

test the above expectations by lattice calculations. There remains to study the 

dependence of C = h&,t on the low energy renormalization scale JL. This is shown 



in figure 3 for A = 0.2 GeV and m, = 0.175 GeV. The large variation of C with rnt 

comes about from the new terms of electroweak origin. It is a substantial variation. 

The dependence on p is very small. We also studied the dependence on m, shown 

in figure 4. This dependence comes mostly from < Qe >o, which according to (24) 

has a (l/m:) dependence and brings in a larger uncertainty. 

Finally, we must multiply C by In& = f?y sin 6’ which depends on the angles 

and the phase 6’ occurring in the KM matrix. The computation of ranges for In& 

is standard and relies on experimental constraints discussed by many groups [2,19] 

and in addition /Eki and the measured B” - B” mixing [2,20]. Studies without (d/e) 

as a constraint, find two solutions, one with S > f and a second with S < :. Typical 

solutions occur in Ref. [lo] fig. 4 and in an extensive study by Kim, et al. [21] in 

figs. (2) and (3d). The values for Im & are correlated with other parameters and 

in particular mc. What we shall use in this article are central values for Im & 

and the extreme upper and lower bounds introduced in fig. 8 in order to show the 

larger range brought in by Im &. This is not the optimal method because we miss 

correlations of Im tt, which will further restrict the range of (c)/c). We plan to 

present a more detail study in the future [ill. Other authors reported studies of the 

correlations[10J21. Figure 5 shows the results of Buchalla et al.[“1 for central values 

of the parameters: Bk = 0.75,p = 0.005,~ = 0.05. The three cwves correspond to 

1. Pure QCD case corresponding to aqua = 0. 

2. The inclusion of R,+,0 an d QED penguin contributions. 

3. The full result after the 2”-penguin and box diagrams are included. 

Figure (6) shows our calculation with the same inputs and the two results agree 

with each other. Figure (7) shows the changes introduced to figure (6) when m. 

is reduced from 175 MeV down to 125 MeV. Finally, figure (8) shows the range 

for (e’/e) for the two extreme values of Im &. We note that the upper range of 

(&/e) remains close to 2 x 10m3 but the lower values are significantly smaller. These 



ranges depend on the value of rnt and the other parameters discussed for C. For 

AQco = 0.2 GeV we note that ( E’/E) is positive for values of rnt less than 200 GeV. 

5. CONCLUSIONS 

The three groups which analyzed CP phenomena for a heavy top agree that 

(8/e) could become very small for rnt Z 77 GeV. The generaI conclusion is that 

it can imitate the superweak theory only for the extreme case mt > 200 GeV. The 

minimal value of (6/t) is still under active consideration. 

From our present understanding, I can draw the following conclusions: 

. The significance of the electroweak terms is enhanced when the top quark is 

heavy [7,10,11]. 

l A complete renormalization analysis with the l/N-estimates for matrix ele- 

ments gives the range 

2 x 1P > C’/E > 1.0 x 1O-4 for rnt < 200 GeV 

l There is still a large range for (cl/~). It 1s important to study and improve the 

theoretical estimates. 

. It is crucial to improve the experiments and bring them in agreement with 

each other, because for the ranges allowed for the parameter AQCD,~. and p 

- A large value E’/E z 1 to 2~10~~ signifies an rn( z 100 GeV. 

- A smaller value E’/E N lo-’ (consistent with zero) favors larger m, X 

200 GeV [10,11,21] or the super weak theory.[*‘l 

- Negative values for the ratio occur only at very heavy top quark masses; 

larger than 200 GeV. 
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Figure Captions 

Figure 1: 

Figure 2: 

Figure 3: 

Figure 4: 

Figure 5: 

Figure 6: 

Figure 7: 

Figure 8: 

Diagrams contributing to the effective AS = 1 Hamiltonian. 

The Wilson coefficient as functions of rnt and for the parameters shown 

in the figure. 

Dependence of C on rnt and ~1. 

Dependence of C on mt and m.. 

The anatomy of E’/E with the curve “3” presenting the full result from 

figure (11) of ref. [lo]. 

The same as figure (5) from ref. (131. 

The same as in figure (5) for m, = 123 MeV. 

Range for the ratio E’/E as a function of mt for the extreme values of 

Im %t. 



A Determination of the Wilson coefficients 

The Wilson coefficients express QCD- and QED-corrections and are determined by solving the renor- 
maliiation group equation (RGE) 

[(P$ + P(g); - 7qmp &)&j - 7g]Cj = 0 (1) 
( 

stepwise from mw to p through the quark mass thresholds. 
Here the fl -function is /3(g) = -(33 - Zn,)& and -,ij is the anomalous dimension matrix for 

each quark mass range. 
The RGE solves the QCD-corrections to all orders in pertubation theory which is needed because 

the strong coupling constant isn’t small. 

A.1 Determination of the Real Wilson coefficient Cf 

The weak AS = l-hamiltonian without QCD-corrections at the energy scale Q = mw aJsuming 
w<mwis 

Hw~(mw) = $(LQ. +t.Q, + CrQt) r-4 

where & = I$&, contains the Kobayashi-Maskawa-matrix elements and Qp = (~~q&-~(~~dp)v-A. 
Using the unitarity of the Kobayashi-Maskawa-matrix & = -(& + &) the weak hamilt&= becomes 

&,(mw) = -@.(Q. - Q.) + &(Q. - Qdl (3) 

The initial condition C:(mw) can be simply read off the first term of the weak hamiltonian H,h by 

Q.-Q.=;Q++;Q- (4) 

with 
Q* = (~~u,)v-a(~~da)v-rf(I.d,)v-r(agua)v-r -(u-c) (5) 

The new operators Q* are constructed in the way that they are multiplicativelly re~ormalizable and 
that the penguin contribution cancel for them. 

For Q = m. the charm-quark fields decouple, vanish from the operators and beccmc 

Q* = (I,u,)v-a(apdp)v-rf(~=d,)v-A(~~up)v-A = Qa * Qt (6) 

These operators are now not multiplicativelly renormalieable, they get contribution from the penguin 
and mix with the penguin-operators. So the evaluation of the RGE gives the relative simple structure 
for the coefficient C; : 

c,F = IX.,(-ry- 
“,.‘~:~).~x,;‘o!+‘l(~)a”(+)(~~(~~~).,i+) + 

‘ , c , 

[X.,(--T 
~.!~~~).~S;:D!-I:(~)L~,~-l(~~(~~~,.~~-) 

(7) 
8 c 

where 0,’ z (zt$, f,O,O,O) is the initial condition read off the weak hamiltonian at Q = m., ai’ 
contains the eigenvalues and the matrix X., the eigenvectors of the anomalous dimension matrix for 
3 flavours. 



A.2 Determination of the imaginary w&on coefficient C; 

Now we are interested in the imaginary wilson coefficients of the effective AS = 1-hamiltonian 

ImH.,, = -3 ~(cfI”‘&) i C,!Im(&))Qi 

= -$$I’&) c C<Q, 

where Im(&) = -I-([.) is used and C, is defined as the coefficient of the imaginary part and the 
relation between the coefficients holds Ci = C,! - C,F. 

The initial condition for C,!(mw) arises from 4.. - Qt and the development of Qt for ,n, > ,nw 
to the gluon-, 7-, Z-penguin and box-diagram. These diagrams produce the operator basis Q1 . QI1 
mentioned in the text. The box-diagrams with two topquarks in the intermediate state produce the 
new operaters (i~d,,)~-~(&obe)y-,, and (r,d,),y,(&,b,),-,, where the last one can be expressed 
by 

(&dp)v-a(&)v-r = ZQ, - ZQ, - Qs + QI + QN + Q,I w 
which is considered in the initial condition and the anomalous dimension matrix. Subtracting C,? from 
section l.l., the initial condition for the imaginary part at Q = mw is given by: 

G(mw) = gi2sin’B 
1” 

A(z) + T&E(=) + 4 sz:I”;w- 4C(.) + D(z)] 

C&r&w) = 1 -L? -------A(z) 4* sin’ Bw 

Ca(mw) = ;[-4rinjBwA(~)+ Y&L+)+ -?:‘Bsw,+‘C(“) 

+0(z)] - -g~)c+) 

C,(nw) = 3 +&(*) + Q& 
h d ew ‘(‘) 

Cs(mw) = - “J@+,) G(Z) 

G(~W) = 3 +b’G(z) 

cr(mv) = EL;+) + +I 
C&w) = 0 

1 
CP(mv) = -z+ gr- 

5 

2 an2 ow B(z) + ’ -F;T C(z) - ;D(z)] 

Clobwv) = -; - g[- 4 .,: ew 4~) - 2 ,in: ew B(z) + 

l +;‘,“- C(z) - ;D(z)] 

Cl,(mv) = 25 
1 

-------A(z) 47r sin’ Bw 

with [4,5,6,7] 

A(z) = -z(;+;,;~ 3 --ql-l&($+. 

(10) 

01) 

02) 

(13) 

(14) 

(15) 

(16) 

(1-J) 

(18) 

(19) 

(20) 

(21) 



B(z) = a(&+ &l=) 

C(z) = ;(z + @$lnz) 

D(Z) = 36(zL $-1923 + 252) + 

36(.1_ I)4 (-@ + 60 z9 - 108~’ + 642 - 16)lnz 

G(z) = (I_ z)3 A(-; + + + &2) + (1 + -42+ ~Z”)hZ 

When we evaluate the procedure, we shift the operator 

(24 

(33) 

(34) 

(35) 

(26) 

QT.. .QIO ==> (27) 
how this WM first done by ref. [z]. Then the initial conditions CT.. Cl0 have to multiplied by 
a*(mtv)la. 

The coefficient C< is calculated by 

C,(p) = ~I~x.,(*)a.'x~~D;] [C w~m(~)a:w~~E:I 
*,I% P1'1 ' I,= , 

[C V~j(~~(~~~)E'v,7'Ci(mw)l (28) 
'3, , 

The matrix E,! and D!: contain the linear relations between the operators at each energy scale. SO, in 
the development of the RGE from an energy scale mw to fi, one reaches Q = rn) where the b-quark 
field vanishes from theory and the operators. The consequence is that Qll vanishes from theory and 
Q1o is related to QIo = -ZQ, + ZQ, + QS - Ql . The matrix E: gets 

and otherwise (I, k = 1,. (9) 

-E;O =E;O = 3& 
a,(4) 

(29) 

Ej” = -E’o = (I 1 
4mZ) (36) 

E: = .5,& (31) 
At an energy scale Q = m, the c-quark field vanishes from theory and from the operators. The matrix 
0,” becomes in accordance to Q. = Q1 + Qz and Q, = -9, + Q2 + Q3 

D;= D: = -$--- 
a cm:) (33) 

-D; = 0; = D; = 1 (33) 

and otherwise (p, n = 1,. (8; p, n # 4) 

D; = L$.,, (34) 



B Anomalous dimension matrices and some results 

For the determination of the anomalous dimension matrices, we follow the approach of Bijnens and 
Wise who present the matrices in a shifted operator basis. Our operator basis is now 

QI .Qa, ~QT.. ;Q,o, QIX 

The anomalous dimension matrix for 5 flavours is 

tui 
7 II! = L 

8~' 

-1 3 0 0 0 0 g 0 -$ 
3 -1 -6 ; -; B % 0 -g 

0 0 -I? y -$ 2 8 3 f? 0 E 
0 0 y 5 -k a -20 

1, 
0 y 

0 0 0 0 1 -3 $ 0 -5 

0 0 -; ; -g -9 h 4 -1 
3 9 

00 000 0 -E 3 -3 0 

00 000 0 0 -iT 3 0 

0 0 00 0 0 0 0 -Ir 
3 

00 000 0 0 0 0 

; 0 

i 0 
8 o 
8 
2 0 

i 0 

; 0 

0 0 

0 0 

0 0 

-$ 0 

(35) 

6 -6 -3 3 0 0 -$ 0 ; -5+32 2 

For 4 tlavours the anomalous dimension matrix is similar to that in [2] with an additional 4/3 in 7s~ 
and yea. For 3 flavours the matrix is identical to the matrix presented in [2] 
From our calculation we present a characteristic result. 

0.033 -0.042 -0.014 0.010 -0.103 

Table 1: Imaginary Wilson Coefficients for A4 = 0.2 GeV and @ = 0.8 GeV. 
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